- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Arzuaga, Emmanuel (1)
-
Ramos_Álamo, María (1)
-
Sierra, Heidy (1)
-
Tatis_Posada, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ifferent mechanisms are used for the discovery of materials. These include creating a material by trial-and-error process without knowing its properties. Other methods are based on computational simulations or mathematical and statistical approaches, such as Density Functional Theory (DFT). A well-known strategy combines elements to predict their properties and selects a set of those with the properties of interest. Carrying out exhaustive calculations to predict the properties of these found compounds may require a high computational cost. Therefore, there is a need to create methods for identifying materials with a desired set of properties while reducing the search space and, consequently, the computational cost. In this work, we present a genetic algorithm that can find a higher percentage of compounds with specific properties than state-of-the-art methods, such as those based on combinatorial screening. Both methods are compared in the search for ternary compounds in an unconstrained space, using a Deep Neural Network (DNN) to predict properties such as formation enthalpy, band gap, and stability; we will focus on formation enthalpy. As a result, we provide a genetic algorithm capable of finding up to 60% more compounds with atypical values of properties, using DNNs for their prediction.more » « less
An official website of the United States government
